Predicate interface in Java is another Functional interface introduced in version 8 and is part of the java.util.function package.
It has one functional method test(Object obj) that takes one input parameter, performs some operations, and returns a boolean.
Since it is a Functional Interface, we can implement it with a Lambda expression.
Predicate<T>
@FunctionalInterface
public interface Predicate<T> {
/**
* Evaluates this predicate on the given argument.
*
* @param t the input argument
* @return {@code true} if the input argument matches the predicate,
* otherwise {@code false}
*/
boolean test(T t);
/**
* Returns a composed predicate that represents a short-circuiting logical
* AND of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code false}, then the {@code other}
* predicate is not evaluated.
*
* <p>Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ANDed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* AND of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) && other.test(t);
}
/**
* Returns a predicate that represents the logical negation of this
* predicate.
*
* @return a predicate that represents the logical negation of this
* predicate
*/
default Predicate<T> negate() {
return (t) -> !test(t);
}
/**
* Returns a composed predicate that represents a short-circuiting logical
* OR of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code true}, then the {@code other}
* predicate is not evaluated.
*
* <p>Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ORed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* OR of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);
}
/**
* Returns a predicate that tests if two arguments are equal according
* to {@link Objects#equals(Object, Object)}.
*
* @param <T> the type of arguments to the predicate
* @param targetRef the object reference with which to compare for equality,
* which may be {@code null}
* @return a predicate that tests if two arguments are equal according
* to {@link Objects#equals(Object, Object)}
*/
static <T> Predicate<T> isEqual(Object targetRef) {
return (null == targetRef)
? Objects::isNull
: object -> targetRef.equals(object);
}
/**
* Returns a predicate that is the negation of the supplied predicate.
* This is accomplished by returning result of the calling
* {@code target.negate()}.
*
* @param <T> the type of arguments to the specified predicate
* @param target predicate to negate
*
* @return a predicate that negates the results of the supplied
* predicate
*
* @throws NullPointerException if target is null
*
* @since 11
*/
@SuppressWarnings("unchecked")
static <T> Predicate<T> not(Predicate<? super T> target) {
Objects.requireNonNull(target);
return (Predicate<T>)target.negate();
}
}
As you can see, in addition to the single abstract method, there are several other default and static methods.
T in Predicate<T> means it can accept an object of any type.
Implementing the Predicate interface
Example 1:
public class Test {
public static void main(String[] args) {
Predicate<Integer> p1 = number -> number % 2 == 0;
System.out.println(p1.test(4));
}
}
The same for the input parameter, if we are dealing with only one, we don’t need to put it between the parentheses ().
Example 2:
Implementation of the and(Predicate<? super T> other) method that accepts the Predicate and returns the Predicate also.
class Test {
public static void main(String[] args) {
Predicate<Integer> lessThan = number -> number < 20;
Predicate<Integer> greaterThan = number -> number > 30;
System.out.println(lessThan.and(greaterThan).test(12));
}
}
Example 3:
Implementation of the or(Predicate<? super T> other) method that accepts the Predicate and returns the Predicate also.
Like the and(Predicate<? super T> other) method. The difference is that or() method returns true if any of the predicates return true.
class Test {
public static void main(String[] args) {
Predicate<Integer> lessThan = number -> number < 20;
Predicate<Integer> greaterThan = number -> number > 30;
System.out.println(lessThan.or(greaterThan).test(12));
}
}
Example 4:
Implementation of the Predicate<T> negate() method that does not accept any inputs and returns the Predicate interface.
class Test {
public static void main(String[] args) {
Predicate<Integer> isEvenNumber = number -> number % 2 == 0;
System.out.println(isEvenNumber.negate().test(12));
}
}
Example 5:
Implementation of the static Predicate<T> isEqual(Object targetRef) method that tests if two arguments are equal according to Objects.equals(Object, Object).
class Test {
public static void main(String[] args) {
Predicate<String> p1 = Predicate.isEqual("Java 8 features");
System.out.println(p1.test("Java 8 features"));
}
}